当前位置: 首页>>科学研究>>科研论文

科研论文

[1]Cen K, Song B, Jiao W, et al.[J]. Engineering Failure Analysis, 2021, 130: 105763.https://doi.org/10.1016/j.engfailanal.2021.105763

[2]Cen K, Song B, Shen R, et al. Dynamic characteristics of gas explosion and its mitigation measures inside residential buildings[J]. Mathematical Problems in Engineering, 2019, 2019: 2068958.https://doi.org/10.1155/2019/2068958.

[3]Cen K, Song B,Jia W, et al. Numerical modeling of the dynamic filling process of high-pressure tankers for marginal gas wells. Journal of Natural Gas Science and Engineering, 2019, 72: 103029.https://doi.org/10.1016/j.jngse.2019.103029

[4]Cen K, Yao T, Wang Q, et al. A risk-based methodology for the optimal placement of hazardous gas detectors. Chinese Journal of Chemical Engineering, 2018, 26: 1078-1086. https://doi.org/10.1016/j.cjche.2017.10.031

[5]Cen K, Song B, Huang Yan, et al.CFD simulations to study parameters affecting gas explosion venting in compressor compartments. Mathematical Problems in Engineering, 2017, 2017: 1090561. https://doi.org/10.1155/2017/1090561

[6]Han T, Wang L, Cen K, et al. Flow-induced noise analysis for natural gas manifolds using LES and FW-H hybrid method. Applied Acoustics, 2020, 159: 107101. https://doi.org/10.1016/j.apacoust.2019.107101

[7]Qin G. J, Cheng Y. F, Zhang P. Finite element modeling of corrosion defect growth and failure pressure prediction of pipelines[J]. International Journal of Pressure Vessels and Piping, 2021, 194: 104509. https://doi.org/10.1016/j.ijpvp.2021.104509

[8]Qin G. J, Cheng Y. F.A review on defect assessment of pipelines: Principles, numerical solutions, and applications[J]. International Journal of Pressure Vessels and Piping, 2021, 191: 104329. https://doi.org/10.1016/j.ijpvp.2021.104329

[9]Qin G. J, Cheng Y. F. Modeling of mechano-electrochemical interaction at a corrosion defect on a suspended gas pipeline and the failure pressure prediction[J]. Thin-Walled Structures, 2021, 160: 107404. https://doi.org/10.1016/j.tws.2020.107404

[10]Qin G. J, Cheng Y. F. Failure pressure prediction by defect assessment and finite element modelling on natural gas pipelines under cyclic loading[J]. Journal of Natural Gas Science and Engineering, 2020, 81: 103445. https://doi.org/10.1016/j.jngse.2020.103445

[11]Zhang P, Qin G. J., Wang Y. Optimal Maintenance Decision Method for Urban Gas Pipelines Based on as Low as Reasonably Practicable Principle [J]. Sustainability, 2019, 11(1), 153. https://doi.org/10.3390/su11010153

[12]Zhang P, Qin G. J, Wang Y. Risk Assessment System for Oil and Gas Pipelines Laid in One Ditch Based on Quantitative Risk Analysis[J]. Energies, 2019, 12(6), 981. https://doi.org/10.3390/su11010153

[13]Zhang P, Su L, Qin G. J, Kong X, Peng Y. Failure probability of corroded pipeline considering the correlation of random variables [J]. Engineering Failure Analysis, 2019, 99, 34-45.https://doi.org/10.1016/j.engfailanal.2019.02.002

[14]Wang Y. H., Zhang P., et al. Reliability assessment of pitting corrosion of pipeline under spatiotemporal earthquake including spatial-dependent corrosion growth[J]. Process Safety and Environmental Protection, 2021, 148: 166-178.

[15]Wang Y. H., Zhang P., et al. Reliability evaluation of local corrosion of X80 pipeline subjected to accidental earthquake considering geotechnical discontinuities[J]. International Journal of Pressure Vessels and Piping, 2021, 189: 104254.

[16]Wang Y. H., Dann M. R., et al. Reliability analysis of corroded pipelines considering 3D defect growth[J]. Thin-Walled Structures, 2020, 157: 107028.

[17]Wang Y. H., Zhang P., et al. Failure probability assessment and prediction of corroded pipeline under earthquake by introducing in-line inspection data[J]. Engineering Failure Analysis, 2020, 115: 104607.(中科院2区TOP,IF=2.879)

[18]Wang Y. H., Hou X., et al. Reliability assessment of multi-state reconfiguration pipeline system with failure interaction based on Cloud inference[J]. Process Safety and Environmental Protection, 2020, 137: 116-127.

[19]Wang Y. H., Zhang P., et al. Non-probabilistic Time-dependent Reliability Analysis for Suspended Pipeline with Corrosion Defects Based on Interval Model [J] Process Safety and Environmental Protection 2019, 124, 290-298.

[20]Qin G., Gong C., Wang Y. H. A probabilistic-based model for predicting pipeline third-party hitting rate[J]. Process Safety and Environmental Protection, 2021, 148: 333-341.

[21]Zhang P., Wang Y. H., et al. A novel method to assess safety of buried pressure pipelines under non-random process seismic excitation based on cloud model[J]. Applied Sciences, 2019, 9(4): 812.

[22]Zhang P., Wang Y. H., Qin G. Fuzzy damage analysis of the seismic response of a long-distance pipeline under a coupling multi-influence domain[J]. Energies, 2019, 12(1): 62.

[23]Hou X., Wang, Y. H.*, et al. Non-probabilistic time-varying reliability-based analysis of corroded pipelines considering the interaction of multiple uncertainty variables[J]. Energies, 2019, 12(10): 1965.

[24]Wu Y, Meng B, Wang L, et al. Seismic vulnerability analysis of buried polyethylene pipeline based on finite element method[J]. International Journal of Pressure Vessels and Piping. 2020(187): 104167. https://doi.org/10.1016/j.ijpvp.2020.104167

[25]Wu Y, You X, Zha S, et al. Investigation of mechanical behavior of buried DN110 polyethylene pipe with a scratch defect under land subsidence[J]. Engineering Failure Analysis, 2021, 125: 105371. https://doi.org/10.1016/j.engfailanal.2021.105371

[26]Wu Y, Zhang Y, Li L. Analysis of ductile damage changes of pipelines with unconstrained dents in rebound process[J]. Engineering Failure Analysis, 2020. https://doi.org/10.1016/j.engfailanal.2020.105071

[27]Wu Y, Zhang Y, Zha S, et al. Strength Analysis of Buried Polyethylene Pipeline Under Ground Subsidence Considering Multivariate Influence[J]. Journal of Pressure Vessel Technology, 2020, 142(4). https://doi.org/10.1115/1.4046515

[28]Wu Y, Zou R, Wang Y, et al. Residual Stress in Oil and Gas Pipelines with Two Types of Dents during Different Lifecycle Stages[J]. KSCE Journal of Civil Engineering, 2020, 24(6): 1832-1844. https://doi.org/10.1007/s12205-020-1133-8

[29]Wu Y, You X, Zha S. Mechanical behavior analysis of buried polyethylene pipe under land subsidence[J]. Engineering Failure Analysis, 2019, 108: 104351. https://doi.org/10.1016/j.engfailanal.2019.104351Get

[30]Wu Y, Li J. Finite element analysis on mechanical behavior of semi-exposed pipeline subjected to debris flows[J]. Engineering Failure Analysis, 2019, 105: 781-797. https://doi.org/10.1016/j.engfailanal.2019.06.055

[31]Zha S, Wu Y, Jin P. Reliability analysis of buried polyethylene pipeline subject to traffic loads[J]. Advances in Mechanical Engineering, 2019, 11(10): 168781401988378.https://doi.org/10.1177/1687814019883785

[32]Wu Y, Li J, Li L. Damage and Springback Analysis of Two Typical Dented Pipelines With Different Parameters[J]. Journal of Pressure Vessel Technology, 2019, 141(4). https://doi.org/10.1115/1.4043590

[33]Wu Y, Li L. Theoretical analysis of type II dent pipe under external force[J]. Applied Ocean Research, 2019, 88: 246-253. https://doi.org/10.1016/j.apor.2019.04.007

[34]Wu Y, Zha S, Jin P. Finite Element Method Simulations to Study Factors Affecting Buried Pipeline Subjected to Debris Flow[J]. Journal of Pressure Vessel Technology, 2018. https://doi.org/10.1115/1.4042055

[35]Wu Y, Jin P, Zhang P. Theoretical analysis of pipeline with type I dent under the external force[J]. Advances in Mechanical Engineering, 2017, 9(5). https://doi.org/10.1177/1687814017705599

[36]Xiong J, Li J, Zhang H, et al. Quantitative Hazard Assessment of Landslides Using the Levenburg–Marquardt Back Propagation Neural Network Method in a Pipeline Area [J]. Geosciences, 2019, 9(10): 449. https://doi.org/ 10.3390/geosciences9100449

[37]Ge L, Zhang C, Tian G. et al. Current Trends and Perspectives of Detection and Location for Buried Non-Metallic Pipelines. Chin. J. Mech. Eng. 34, 97 (2021).

[38]Chen B, Lan J, Ge* L , Lu Y. F, Hu Y. B , Li W. H , Lai C , Xiao X. T , Huang Q. Simulation Research on Acoustic Detection Technology of Buried PE Pipes [J].International Journal of Circuits, Systems and Signal Processing, 2021, 15: 400-409.

[39]Wei S-Y, Zhou W, Han R, et al. Mass production of EP/CaCl2@C core-shell large particles for solar-driven thermochemical heat storage application[J]. Energy & Fuels, 2021,35(8): 6845-6857.https://doi.org/10.1021/acs.energyfuels.0c04021

[40]Zhang P, Huang Y. F, Wu Y, et al. Investigations on the re-rounding performance of dented-pipelines at the service and shutdown stages[J]. Engineering Failure Analysis,2020,116.

[41]Luo Z. H., Yang K., Han T. A study on the application of public–private partnership mode in shale gas development industry in China[J]. Journal of Renewable and Sustainable Energy, 2018.

[42]Luo Z. H., Yang Y. F., Zhong M. F. Research on Performance Evaluation System of Shale Gas PPP Project Based on Matter Element Analysis[J]. Mathematical Problems in Engineering, 2018.

[43]Li Y. L., Li X. P., Wu F., Lu H. L., Wang W. J., Lu R. B., Li J., Tan X. H. Experimental study on stress sensitivity of high-temperature and high-pressure sandstone gas reservoirs in Ying qiong Basin[J], Energy Science & Engineering, 2020, 8(11): 4116–4125.

[44]Wei L., Pan L. M., Liu H. B., Ren Q Y., He H., Cen K.,et al. Assessment of wall heat flux partitioning model for two-phase CFD[J]. Nuclear Engineering and Design, 2022, 390: 111693.

[45]Peng S. B., Chen R. L., Yu B., et al. Daily natural gas load forecasting based on the combination of long short-term memory local mean decomposition, and wavelet threshold denoising algorithm[J]. Journal of Natural Gas Science & Engineering, 2021, 95: 104175.

[46]Peng S. B., Zhang Z., Liu E. B., et al. A new hybrid algorithm model for prediction of internal corrosion rate of multiphase pipeline[J]. Journal of Natural Gas Science & Engineering, 2021, 85: 103716.

[47]Peng S. B., Zhang Y., Zhao W. W., et al. Analysis of the influence of rectifier blockage on the metering performance during shale gas extraction[J]. Energy & Fuels, 2021, 35: 03748.

[48]Peng S. B., Chen Q. K., Liu E. B. The role of computational fluid dynamics tools on investigation of pathogen transmission: Prevention and control[J]. Science of the Total Environment, 2020, 746: 142090.

[49]Peng S. B., Liao W., Liu E. B. Pipe–soil interaction under the rainfall-induced instability of slope based on soil strength reduction method[J]. Energy Reports, 2020, 6: 1865-1875.

[50]Peng S. B., Chen Q. K., Zheng, C., et al. Analysis of particle deposition in a new-type rectifying plate system during shale gas extraction[J]. Energy Science & Engineering, 2020, 8(3):702–717.

[51]Peng S. B., Chen Q. K., Shan C. X., et al. Numerical analysis of particle erosion in the rectifying plate system during shale gas extraction[J]. Energy Science & Engineering, 2019, 7(5): 1838–1851.

[52]Peng S. B., Liao W., Tan H. Performance optimization of ultrasonic flow meter based on computational fluid dynamics [J]. Advances in Mechanical Engineering, 2018, 10(8): 1–9.

[53]Liu E. B., Li D., Li W., et al. Erosion Simulation and Improvement Scheme of Separator Blowdown System—A case study of Changning national shale gas demonstration area[J]. Journal of Natural Gas Science and Engineering, 2021, 88: 103716.

[54]Liu E. B., Tian D., Li W., et al. Study on Erosion Behavior and Separation Efficiency of a Shale Gas Vertical Separator[J]. Energy and Fuels, 2021.

[55]Liu E. B., Wang X., Zhao W., et al. Analysis and research on pipeline vibration of Natural gas compressor station and vibration reduction measures[J]. Energy and Fuels, 2021, 35(1): 479-492.

[56]Liu E. B., Peng Y., Peng S. B., et al. Simulation Model and Case Study of Drainage Process after Pressure Test of Large Drop Natural Gas Pipeline[J]. IEEE Access, 2020, 8: 47251-47265.

[57]Liu E. B., Guo B., Lv L., et al. Numerical simulation and simplified calculation method for heat exchange performance of dry air cooler in natural gas pipeline compressor station[J]. Energy Science & Engineering, 2020, 8(6): 2256-2270.

[58]Liu E. B., Kuang J., Peng S. B., et al. Transient Operation Optimization Technology of Gas Transmission Pipeline: A Case Study of West-East Gas Transmission Pipeline[J]. IEEE Access, 2019, 7: 112131-112141.

[59]Liu E. B., Ma X., Zhou M. Analysis of discharge process of oil pipeline with complex topography[J]. Energy Reports, 2019, 5: 678-687.

[60]Liu E. B., Lv L., Yi Y., et al. Research on the Steady Operation Optimization Model of Natural Gas Pipeline Considering the Combined Operation of Air Coolers and Compressors[J]. IEEE Access, 2019, 7: 83251–83265.

[61]Su Z., Liu E., Xu Y., et al. Flow field and noise characteristics of manifold in natural gas transportation station[J]. Oil & Gas Science and Technology-Revue d’IFP Energies Nouvelles, 2019, 74:70.

[62]Liu E. B., Lv L., Ma Q., et al. Steady-state optimization operation of the West-East Gas Pipeline[J]. Advances in Mechanical Engineering, 2019, 11(1): 16878140-18821746.

[63]Wang C. H., Li L. Q., Chen R. F., et. al. Thermal conversion of tobacco stem into gaseous products [J]. Journal of Thermal Analysis and Calorimetry, 2019, 137: 811-823.

[64]He G. X., Liang Y., Li Y., et al. A method for simulating the entire leaking process and calculating the liquid leakage volume of a damaged pressurized pipeline[J]. Journal of hazardous materials, 2017, 332: 19-32.

[65]He G. X., Lin M., Wang B., et al. Experimental and numerical research on the axial and radial concentration distribution feature of miscible fluid interfacial mixing process in products pipeline for industrial applications[J]. International Journal of Heat and Mass Transfer, 2018, 127: 728-745.

[66]He G. X., Li Y., Yin B., et al. Numerical simulation of vapor condensation in gas-water stratified wavy pipe flow with varying interface location[J]. International Journal of Heat and Mass Transfer, 2017, 115: 635-651.

[67]He G. Heat Transfer and Phase Change Characterization of Multicomponent Vapor/Condensation Stratified Flow in a Hydrocarbon Pipeline[J]. Industrial & Engineering Chemistry Research, 2017, 56(29): 8358-8374.

[68]He G. X., Tang D. D., Li Y. S., et al. Numerical modeling of the fluid concentration distribution during the interfacial contamination process in multiproduct pipeline[C]. 6th Asian Symposium on Computational Heat Transfer and Fluid Flow, 2017.

[69]He G. X., Li Y. S., Huang Q. Y., et al. Numerical prediction of liquid level in a large diameter rich gas pipeline under the gas-liquid stratified flow condition[C]. 6th Asian Symposium on Computational Heat Transfer and Fluid Flow, 2017.

[70]岑康,李欢,王咏龙,等. LNG加气站工艺危害分析[J].煤气与热力, 2022, 42(02):37-40.https://doi.org/10.13608/j.cnki.1000-4416.2022.02.002.

[71]岑康,李欢,王泳龙,等. LNG加气站槽车卸车直供过程泄漏后果分析[J].中国安全生产科学技术, 2021, 17: 77-84. https://doi: 10.11731/ j.issn.1673-193x.2021.04.013.

[72]岑康,徐浩然,刘国庆,等.开放式厨房燃气泄漏爆炸定量风险评价[J/OL].安全与环境学报, 2021:1-14. https://doi.org/10.13637/j.issn.1009-6094.2021.1045.

[73]岑康,黄夏雨,代敏雪,等.强制电流阴极保护阳极地床杂散电流干扰特性研究[J].中国安全生产科学技术,2021,17(10):140-146.https://doi.org/10.11731/j.issn.1673-193x.2021.10.021

[74]岑康,任国强,王政新,等.基于SIL评估的LNG加气站安全仪表系统问题分析及改进建议[J].中国安全生产科学技术, 2021, 17(12):17-23.https://doi.org/10.11731/j. issn.1673-193x.2021.12.003

[75]岑康,范文强,周莉,等.燃气式增压机烟气加热三甘醇脱水再生工艺研究[J].石油与天然气化工, 2021, 50(05):113-118+128.https://doi.org/10.3969/j.issn.1007-3426.2021.05.021

[76]岑康,张翌东,黄夏雨,等.考虑人因可靠性的安全仪表功能SIL验证方法研究[J].中国安全生产科学技术, 2020, 16(03):31-36.https://doi.org/10.11731 /j.issn.1673-193x.2020.03.005

[77]岑康,邓宇凡,刘丹,等.天然气放空管地面爆燃点火装置点火特性研究[J].石油与天然气化工, 2020, 49(06):117-124.https://doi.org/10.3969/j.issn.1007-3426.2020.06.020

[78]林东,岑康,蒲昌兴,等.在役燃气聚乙烯管材老化性能评价指标研究[J].煤气与热力, 2019, 39(05):28-31+43.https://doi.org/10.13608/j.cnki.1000-4416.2019.05.008.

[79]岑康,王磊,孙华锋,等.在役燃气管网追加强制电流阴极保护关键技术[J].天然气工业, 2019, 39(05):115-122. https://doi.org/ 10.3787/j.issn.1000-0976.2019.05.014

[80]岑康,唐军英,张优,等.基于SE-DEA的居民户内燃气设施安全管理效能评价[J].油气储运, 2018, 37(05):486-492+532.https://doi.org/10.6047/j.issn.1000-8241.2018.05.002.

[81]伍颖,田中旭,李林涯. X80管道凹痕缺陷失效准则对比分析[J].金沙娱场城app7979学报(自然科学版), 2021, 43(6):134-142.

[82]王雯悦,伍颖,尤潇,陈朗.基于改进Borda法与属性识别的山区输气管道地震易损性评价[J].油气储运, 2021, 40(11):1265-1271.

[83]孟博杰,伍颖,陈良若.基于改进风险矩阵法的配气站地震事件序列分析[J].中国安全生产科学技术, 2021, 17(03):110-116.

[84]伍颖,查四喜,金鹏威,豆利军.泥石流作用下埋地管道的可靠度分析[J].自然灾害学报, 2019, 28(02):199-206.

[85]伍颖,王乐,谢彦平,唐娜.施工阶段轴向单纯凹痕管道韧性损伤变化分析[J].机械强度, 2019, 41(02):436-441.

[86]伍颖,邹荣,肖洁文,黄云飞.含单纯凹陷薄壁不锈钢燃气管道的韧性损伤程度分析[J].中国安全生产科学技术, 2018, 14(11):82-87.

[87]张鹏,王艺环,秦国晋.随机时空地震载荷下长输埋地压力管道的响应分析[J].天然气工业,2018,38(12):120-127.

[88]张鹏,秦国晋,王艺环.城市燃气事故生命损失风险可接受标准研究[J].中国安全生产科学技术,2018,14(08):181-186.

[89]彭善碧,李梦荧,张云.制造业用页岩气除砂器气固两相分离特性研究[J].制造业自动化, 2020, 42 (12):143-147.

[90]彭善碧,廖文,徐明军,等.滑坡对埋地天然气管道的作用机理分析[J].中国地质灾害与防治学报, 2019, 30(6):59-67.

[91]彭善碧,李涛,刘恩斌,等.基于泄漏扩散后果评价的CO2管道截断阀间距确定[J].油气储运, 2018, 37(1):29-34.

[92]刘恩斌,匡建超,吕留新,等.大型天然气管道稳态运行优化研究[J].金沙娱场城app7979学报(自然科学版), 2019, 41(5):150-160.

[93]刘恩斌,刘宇婷.天然气管道瞬态运行优化技术研究进展[J].科学技术与工程, 2017, 17(21):175-183.

[94]何国玺,聂四明,李岩松,等.液体管道破损处泄漏特性实验环道设计[J].管道技术与设备, 2018(05):11-14.

[95]何国玺,梁永图,李岩松,等.埋地液烃管道泄漏扩散及泄漏量测算研究进展[J].油气储运, 2017, 36(1):8-20.

[96]高杰,梁永图,何国玺,等.煤层气地面集输管网的瞬态水力热力计算模型[J].天然气工业, 2017, 37(7):108-114.



Baidu
sogou