学术动态

学术动态

当前位置: 首页>>学术动态>>正文

20231009 迎校庆六十五周年系列学术活动之十一:Transforming how to evaluate wells and unlock reserves Deep Transient Testing

供稿:校园网        编辑:宋艾玲        审核:赵玉龙        日期:2023年10月09日        浏览:

   间:2023年10月9日(周一)10:00-11:00

报告地点:全国重点实验室A403

报告题目:Transforming how to evaluate wells and unlock reserves: Deep Transient Testing

报 告 人:François-Xavier Dubost

报 告 人:Francois-Xavier Dubost focused for 27 years on reservoir performance evaluation and recently joined the SLB HQ team as Reservoir Technical Director. Graduated from Herriot Watt University with an MSc in Reservoir Evaluation and Management, Francois has been looking at all angles of reservoir engineering topics from acquisition to interpretation and incorporation of the measurements into field models. He recently dedicated his interests in the field of Deep Transient Testing, introducing this topic to the industry with the first published papers, presenting it in different expert meetings and lectures, and acting as a leader internationally to develop this new technique. Francois co-authored over 30 publications and filed over 10 patents predominently on Formation Testing & Sampling.

报告内容:Dynamic data, acquired with wireline formation testing or well testing, are used by operators to address uncertainties associated to reserve estimates and productivity, while rationalizing field development and production costs. However, these two evaluation techniques provide data at different length scales, and with different environmental footprint, cost, and operational constraints. To help reduce development risks but unlock reserves, a Deep Transient Testing (DTT) technique was developed in response to an industry and customer need in 2015 and has been used since then by many oil companies. The method is a hybrid technique between wireline formation testing and DST. It is based on innovations with higher resolution measurements, pumping of large fluid volumes on wireline at higher rates, extending testing time and circulating the produced fluids out of the well for safety and well control, without the requirement for surface flaring. These features enable dynamic reservoir characterization in thicker formations, higher permeabilities and with much deeper volume of investigation than previously available. Pressure transient testing and sampling results from DTT technique is now becoming an important component in operating companies’ reservoir evaluation programs. The DTT technique is embedded in a digital framework to provide early reservoir fluids models and reservoir insights coupled to geological models, so that well deliverability and prospect commerciality can be assessed. DTT also aligns with global sustainable development goals, by enabling reductions in CO2 emissions by up to 96% percent, and offering high operational efficiency compared with other wireline formation testing systems to significantly reduce energy consumption.

欢迎全校师生参加!

油气藏地质及开发工程全国重点实验室

SPE成都分部

石油与天然气工程学院

天然气现代产业学院

金沙娱场城app7979SPE学生分会

科学技术发展研究院



上一条:20231023 迎校庆六十五周年系列学术活动之二十七 下一条:20230925 Hydraulic Processes in fractured rock under geothermal relevant flow

关闭

Baidu
sogou